Researchers Uncover Mechanism Controlling Tourette Syndrome Tics

12/16/2013

A mechanism in the brain which controls tics in children with Tourette Syndrome (TS) has been discovered by scientists at The University of Nottingham.

The study could herald new non-drug therapies to help young people with TS overcome the repetitive physical movements and vocal sounds which characterise their condition. The work was funded with a £150,000 grant from the James Tudor Foundation and was carried out by PhD student Amelia Draper.

Stephen Jackson, in the University's School of Psychology, said: "This new study is very important as it indicates that motor and vocal tics in children may be controlled by brain changes that alter the excitability of brain cells ahead of voluntary movements. You can think of this as a bit like turning the volume down on an over-loud motor system. This is important as it suggests a mechanism that might lead to an effective non-pharmacological therapy for Tourette Syndrome."

The neurological condition TS affects around one child in every 100 and usually starts during early childhood. Scientists believe that the tics that affect children with TS are caused by faulty wiring in the brain that leads to hyper excitability in the brain regions controlling motor function.

In adolescence, there is a period of 'pruning back' in which redundant brain connections are removed and other structural and functional brain changes occur. During this time, around one-third of children with TS will find that their tics disappear and another third are able to more effectively control their tics. Unfortunately, the remaining third of individuals will see little or no change in their tics and are likely to remain troubled by their TS symptoms into adulthood.

This clinical observation suggests that there are mechanisms in the brain that are involved in controlling tics and undergo development or re-organisation during the teenage years.

"The research is based on the general hypothesis that an area in the brain called the striatum is overactive as a result of alterations in the early development of the brain. As a result, the signals that are relayed to the brain's cortex region lead to hyper-excitability and cause tics to occur,” Amelia Draper added. "We have looked at how that hyperactivity and the resultant tics might be controlled by finding a way to 'turn down the volume' on that 'cortical excitability'. This is potentially extremely important as the parents of children with tics are desperate to find a safe and effective therapy that is an alternative to drug treatments."

In the current study the team used a method called Transcranial Magnetic Stimulation (TMS) in which a magnetic field is passed over the brain to produce a weak electrical current which stimulates motor function to induce a twitch response. By delivering TMS at different points in time as participants were about to undertake a hand movement, the researchers were able to measure alterations in brain excitability ahead of the movement and chart the differences between each person.

The study showed that subjects with TS, unlike those of a similar age without the condition, were least able to modulate the hyperactivity in the brain.

Further research by the team has involved the use of a similar type of brain stimulation called transcranial direct current stimulation (TDCS) to study the brains of children with TS. Early results suggest that TDS can be applied to decrease neuronal excitability and this may be effective in suppressing tics for extended periods. In addition, if another form of TDCS is applied, one that increases neuronal excitability, it may act to improve learning and memory function, particularly in the context of behavioural therapies. Following use of these treatments lasting effects can be applied to the brain.

If proven to be effective, the technology could be adapted into a TENS machine-style device that would offer a cheap, portable and individualised therapy for children with TS.

REHACARE.de; Source: University of Nottingham

More about the University of Nottingham at: www.nottingham.ac.uk